Parameter estimation for SPDEs based on discrete observations in time and space

نویسندگان

چکیده

Parameter estimation for a parabolic linear stochastic partial differential equation in one space dimension is studied observing the solution field on discrete grid fixed bounded domain. Considering an infill asymptotic regime both coordinates, we prove central limit theorems realized quadratic variations based temporal and spatial increments as well double time space. Resulting method of moments estimators diffusivity volatility parameter inherit normality can be constructed robustly with respect to sampling frequencies Upper lower bounds reveal that general optimal convergence rate joint parameters slower than usual parametric rate. The theoretical results are illustrated numerical example.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter estimation for the subcritical Heston model based on discrete time observations

where a > 0, b, α, β ∈ R, σ1 > 0, σ2 > 0, ̺ ∈ (−1, 1), and (Wt, Bt)t>0 is a 2-dimensional standard Wiener process, see Heston [7]. We investigate only the so-called subcritical case, i.e., when b > 0, see Definition 2.3, and we introduce some parameter estimator of (a, b, α, β) based on discrete time observations and derived from conditional least squares estimators (CLSEs) of some modified para...

متن کامل

Parameter Estimation for Spdes with Multiplicative Fractional Noise

We study parameter estimation problem for diagonalizable stochastic partial differential equations driven by a multiplicative fractional noise with any Hurst parameter H ∈ (0, 1). Two classes of estimators are investigated: traditional maximum likelihood type estimators, and a new class called closed-form exact estimators. Finally the general results are applied to stochastic heat equation driv...

متن کامل

Online State Space Model Parameter Estimation in Synchronous Machines

The purpose of this paper is to present a new approach based on the Least Squares Error method for estimating the unknown parameters of the nonlinear 3rd order synchronous generator model. The proposed method uses the mathematical relationships between the machine parameters and on-line input/output measurements to estimate the parameters of the nonlinear state space model. The field voltage is...

متن کامل

Parameter estimation of diffusion models from discrete observations ∗

A short review of diffusion parameter estimations methods from discrete observations is presented. The applicability of a new estimation method on inferences about a diffusion growth model is discussed.

متن کامل

Parameter Estimation for Discrete-Time Nonlinear Systems Using EM

In this paper we consider parameter estimation of general stochastic nonlinear statespace models using the Maximum Likelihood method. This is accomplished via the employment of an Expectation Maximisation algorithm, where the essential components involve a particle smoother for the expectation step, and a gradient-based search for the maximisation step. The utility of this method is illustrated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2021

ISSN: ['1935-7524']

DOI: https://doi.org/10.1214/21-ejs1848